
CS103 Handout 44

Winter 2018 March 9, 2018

Practice Final Exam 2

We strongly recommend that you work through this exam under realistic conditions rather than
just flipping through the problems and seeing what they look like. Setting aside three hours in a
quiet space with your notes and making a good honest effort to solve all the problems is one of
the single best things you can do to prepare for this exam. It will give you practice working un-
der time pressure and give you an honest sense of where you stand and what you need to get
some more practice with.
This practice final exam is a (slightly modified) version of the final exam we gave out in Fall 2016.
The exam policies are the same for the midterms – closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 50 total points.

Question Points Graders

(1) Set Theory and Logic / 8

(2) Graphs and Natural Numbers / 6

(3) Binary Relations and Induction / 10

(4) Regular and Context-Free Languages / 13

(5) R and RE Languages / 10

(6) P and NP Languages / 3

/ 50

2 / 14

Problem One: Set Theory and Logic (8
Points)
An independence system over a set A is a nonempty set I ⊆ ℘(A) with the following property:

∀S ∈ I. ℘(S) ⊆ I.
This question explores some properties of independence systems.

i. (3 Points) Prove that if I is an independence system over a set A, then Ø ∈ I.

3 / 14

As a refresher from part (i) of this problem, an independence system over a set A is a nonempty
set I ⊆ ℘(A) with the following property:

∀S ∈ I. ℘(S) ⊆ I.
ii. (5 Points) Let I₁ and I₂ be independence systems over the same set A. Prove that I₁ ∩ I₂ is

also an independence system over A.

For simplicity, you can use the fact that I₁ ∩ I₂ ⊆ ℘(A) without proof. However, since we
haven't talked much about properties of set intersection in this course, if you want to use
any other facts about set intersection, you'll need to prove them first.

4 / 14

Problem Two: Graphs and Natural Numbers (6 Points)
On Problem Set Four, you explored bipartite graphs. As a refresher, a graph G = (V, E) is bipar-
tite if there are sets V₁ and V₂ where all three of the following are true:

• V₁ and V₂ have no nodes in common (that is, V₁ ∩ V₂ = Ø).

• Every node v ∈ V belongs to at least one V₁ and V₂.

• Every edge in E has one endpoint in V₁ and the other endpoint in V₂.

Now, consider the graph Gℕ defined as follows: the nodes in Gℕ are the natural numbers, and
there's an edge between a pair of nodes u and v if and only if u + v is odd. This graph contains in-
finitely many nodes, which is unusual but nothing to worry about.

Prove that Gℕ is bipartite.

5 / 14

Problem Three: Induction and Binary Relations (10 Points)
Given a binary relation R over a set A and a natural number n ≥ 1, we can define a new binary re-
lation over A called the nth power of R, denoted Rn. This relation is defined inductively as fol-
lows:

xR1y if xRy
xRn+1y if ∃z ∈ A. (xRz ∧ zRny).

(Note that Rn is only defined for n ≥ 1, and remember that “if” here means “is defined as.”)

i. (7 Points) Let R be an arbitrary binary relation over a set A. Your task is to prove the fol-
lowing statement:

For any natural numbers m, n ≥ 1,
and for any a, b, c ∈ A,

if aRnb and bRmc, then aRn+mc.

To do so, we'd like you to use induction. Specifically, use induction to prove that the state-
ment P(n) defined below is true for all natural numbers n ≥ 1:

P(n) is the statement “for any natural number m ≥ 1,
and for any a, b, c ∈ A,

if aRnb and bRmc, then aRn+mc.”

“Hey, wait a minute!,” you’re probably saying. “Didn’t we do this one on the problem set?” Yep,
you did! See if you can do it again without looking at the solutions. 😃

6 / 14

(Extra space for your answer to Problem Three, part (i), if you need it.)

7 / 14

The transitive closure of a binary relation R over a set A, denoted R+, is a binary relation over A
defined as follows:

xR+y if ∃n ∈ ℕ. (n ≥ 1 ∧ xRny).

ii. (3 Points) Let R be an arbitrary binary relation over a set A. Using your result from part
(i) of this problem, prove that R+ is transitive. (You can use the result from part (i) even if
you weren't able to prove it.)

8 / 14

Problem Four: Regular and Context-Free Languages (13 Points)
Consider the following language:

L₁ = { w ∈ {a, b, c}* | the last character of w appears nowhere else in w, and |w| ≥ 1 }.

This is a variant on one of the languages you built an NFA for in Problem Set Six. Here are some
sample strings in L₁:

• a

• b

• c

• aaaaac

• aabbaabbc

• ccbbccbba

• bac

• cbba

Since this language is regular, it's possible to build a regular expression for it.

i. (2 Points) Write a regular expression for L₁. (Hint: You probably don't have time to work
through the state elimination algorithm on this exam. Try designing the regular expression
from scratch.)

9 / 14

In many programming languages (C, C++, Python, Java, JavaScript, etc.), a string literal is a
piece of text enclosed in double quotes, such as "Hi everybody!" or "Good luck on the
exam!". Sometimes, you'll want to define a string that contains a double-quote character. In these
languages, to do that, you escape the double-quote by preceding it with a backslash, like this:

"Quoth the raven \"Nevermore.\""

This lets the compiler distinguish between the double-quotes inside a string and the double-quotes
delimiting a string.

As a consequence of this rule, any time you want to write a backslash character, you need to es -
cape it as well by preceding it with a second backslash. For example, you might have a string like
this:

"The notation \"A \\ B\" denotes the difference of the sets A and B."

Let Σ = {z, ", \} and consider this language L₂:

L₂ = { w ∈ Σ* | w is a legal string literal }.

Here are some sample strings in L₂:

• ""

• "z"

• "\""

• "\\"

• "zz\"zz\\zz\"z"

• "\\\""

• "\"zz\""

• "\"\""

Here are some sample strings not in L₂:

• "z (this string isn't closed)

• """ (the quote in the middle needs to be escaped)

• "\" (this string is unterminated – that final double quote is escaped)

• \"zz" (the string doesn't begin with a double quote)

• "\z" (you cannot escape the letter z with a slash)

• "\\\z" (you cannot escape the letter z with a slash)

This language happens to be regular, which is useful because many compilers use some form of
finite automaton to find strings in source code.

ii. (3 Points) Design an NFA for L₂.

10 / 14

Let Σ = { 1, ≥ } and consider the following language L₃:

L₃ = { 1m≥1n | m, n ∈ ℕ and m ≥ n }

iii. (4 Points) Prove that L₃ is not a regular language.

11 / 14

Let Σ = {a, b} and consider the following language:

L₄ = { w ∈ Σ* | |w| ≡4 0, and the first quarter of the characters in w contains at least one b }.

For example, baaa ∈ L₄, bbbb ∈ L₄, abbbbbba ∈ L₄, bbbaaabbbaaa ∈ L₄, ababbbbbbbbb ∈ L₄, but
abbb ∉ L₄, ε ∉ L₄, b ∉ L₄, aabbbbaa ∉ L₄, and aaabbbbbbbbb ∉ L₄. (For simplicity, I've under-
lined the first quarter of the characters in each string).

iv. (4 Points) Write a CFG for L₄.

12 / 14

Problem Five: R and RE Languages (10 Points)
Stanford's email system often tags messages with attachments as possible viruses by changing the
subject to say something like [POSSIBLE VIRUS: ###]. You might wonder why the email system
says something is a “possible” virus rather than just intercepting emails that really do contain
viruses and blocking them from getting to their recipients. This question explores why.

Let's imagine that there's some method that, if called, will do something nefarious to your com-
puter. Imagine it's this method:

private void doSomethingNefarious()

Your job is to prove that it's impossible to write a method

private boolean canDoSomethingNefarious(String program)

that takes as input the source code of a program, then returns true if the program under some cir-
cumstance can call the doSomethingNefarious method and returns false otherwise. (This par-
tially explains why you get the “possible” virus warning over email – there's no general way to test
whether a program can do nefarious things!)

i. (4 Points) In the interests of time, we don't want you to write out a full formal proof of
this result. Instead, do the following:

• In the space below, write a self-referential program P that uses the canDoSomethingNe-
farious method such that P does something nefarious if and only if it doesn't do some-
thing nefarious. You can assume you have access to a method mySource() that returns the
source code of your program.

• Briefly explain why P does something nefarious if and only if it doesn't do something ne-
farious, addressing each direction of the implication.

13 / 14

iii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { 1m+1n=1m+n | m, n ∈ ℕ and m and n are even }

4. { 1m+1n=1m+n | m, n ∈ ℕ and m ≤ 10137 }

5. { 1m+1n=1m+n | m, n ∈ ℕ and m + n ≤ 10137 }

6. { ⟨M, w⟩ | M is a TM, w is a string, and M accepts w within |w|137 steps }

7. { ⟨M⟩ | M is a TM and M halts on infinitely many inputs }

8. { ⟨M, w⟩ | M is a TM, w is a string, M accepts at least one substring of w }

14 / 14

Problem Six: P and NP Languages (3 Points)
We briefly covered the P and NP languages in our last week of class. Here's a quick series of
true/false questions about them. Each correct answer is worth one point, and there is no penalty
for an incorrect guess. You do not need to justify your answers.

i. NP stands for “not polynomial time” and is the class of decision problems that cannot be
solved in polynomial time.

☐ True ☐ False

ii. All NP-hard problems are in NP.

☐ True ☐ False

iii. If the halting problem is decidable, then P ≠ NP.

☐ True ☐ False

We have one final question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question – we're honestly curious to hear your opinion!

☐ I think P = NP ☐ I think P ≠ NP

